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Eigenvector-centrality — a node-centrality?q
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Abstract

Networks of social relations can be represented by graphs and socio- or adjacency-matrices and
their structure can be analyzed using different concepts, one of them called centrality. We will
provide a new formalization of a “node-centrality” which leads to some properties a measure
of centrality has to satisfy. These properties allow to test given measures, for example measures
based on degree, closeness, betweenness or Bonacich’s eigenvector-centrality. It turns out that it
depends on normalization whether eigenvector-centrality does satisfy the expected properties or
not. © 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The concept of centrality has been discussed for over 50 years now. An intensive research
regarding appropriate measures originated from the analysis of communication patterns
and their performance in small groups by Bavelas (1950) and Leavitt (1951). For example,
measures based on the degree of a node, on its distance to other nodes, on the betweenness
or on algebraic concepts like the eigenvector of a matrix have been suggested. For an
overview see, e.g. Wasserman and Faust (1997). Though lot of information about different
centrality-measures is disposal:

“There is certainly no unanimity on exactly what centrality is or on its conceptual foun-
dations, and there is very little agreement on the proper procedure for its measurement.”
(Freeman (1977), p. 217)

We think this statement is still valid, in particular if the measures should allow comparisons
between different graphs. Here the influence of network size has to be removed, thus a kind of
normalization is required. Our aim is to develop a formal definition of a “node-centrality”
that matches the intuitive understanding of centrality and is related to a fixed scale. For
interpretation of measurement results the scale a value is related to provides important

q This is a revised version of a paper presented at the Symposium on Operations Research (SOR) in Magdeburg
in 1999.
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information. The interpretation of a value of, say, 0.8 will differ essentially if the maximal
value that can be reached is 1 or if it is 10. Another reason for a fixed scale is that comparison
of nodes from different graphs independent of graph size becomes possible.

We then compare “node-centrality” to several well-known centrality concepts. In par-
ticular we will provide conditions under which eigenvector-centrality (see, e.g. Bonacich
(1972b)) is a node-centrality. Here it will turn out that normalization of the eigenvector has
an important influence.

The paper is organized as follows. First we recall some basic notation and Freemans
general procedure for normalizing point-centralities and developing an appropriate graph
centralization measure (Freeman, 1979). Based on the notion of the “star”, our central
definition is developed in Section 3 and applied to different centrality-measures.

In Section 4 we recall the definition of eigenvector-centrality and examine different ways
of normalizing the eigenvector. Their influence on eigenvector-centrality as a node-centrality
is discussed. Section 5 concludes.

2. Basic notation and point-centrality

A social network can formally be represented by a graphG = (V , E), whereV is the
set of nodes, or points, respectively, andE the set of edges. We restrict our considerations
to undirected graphs. The distance dist(vi, vj ) is the length of a geodesic, i.e. the number
of edges in a shortest path betweenvi andvj . d(vi) is the degree of nodevi , andGn =
{G||V | = n} is the set of all undirected and connected graphs withn nodes.

The description of actors in social networks is often done in terms of some “structural
features” like the degree, closeness or betweenness of an actor. These structural features
have been used to create measures of centrality for single nodes in a graph. Here we recall
briefly the definition of these measures.1

Degree-centralityCD(vi) = d(vi), vi ∈ V , is based on the idea that the number of “direct
relations” an actor has is an important feature of his structural position.Closeness-centrality
CC(vi) = 1/

∑n
j=1dist(vi, vj ), vi ∈ V , takes into account how far away an actor is

located from all other actors, andBetweenness-centralityCB(vi) = ∑n
k=1

∑n
j :j>k[gkj

(vi)/gkj], vi ∈ V , relies on the extent to which other nodes depend onvi as transmitter
of, say, communication. Heregkj is the number of geodesics connectingvk andvj and
gkj(vi) the number of such geodesics containingvi .

These three centrality-measures emphasize different structural aspects and represent dif-
ferent points of view. They have in common that they all depend onn, the size of the graph.
This problem, “the effect of network size”, was examined by Freeman (1979) for the above
defined centrality-measures. Using

C′
X(vi) := CX(vi)

C∗
X

(1)

with C∗
X = maxG∈GnmaxiCX(vi), where the indexX can either be D, C or B referring to

degree, closeness or betweenness centrality, removes this effect.2 C′
X(vi) is restricted to

1 For a detailed description and further literature see Freeman (1979).
2 See, e.g. Freeman (1979) and Wasserman and Faust (1997).
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the interval [0,1], and usingC∗
X for normalization guarantees that at least one node in some

G ∈ Gn reaches 1. Thus,C′
X(vi) is an absolute measure in the sense that we can interpret

the values with respect to the scale from 0 to 1. In the following we call centrality-measures
normalized in this waypoint-centrality(Freeman, 1979).

Based on a point-centralityC′
X(vi) agraph-centralization indexis given by

CX =
∑

i (C
′
X(v∗) − C′

X(vi))

maxG∈Gn(
∑

i (C
′
X(v∗) − C′

X(vi))
(2)

where the nominator is the difference in point-centralities to the maximal value occurring in
the actual graph,C′

X(v∗) = maxiC′
X(vi), and the denominator gives the maximal difference

in point-centralities with respect to allG ∈ Gn. Obviously,CX ∈ [0, 1].
The graph determining the maximal value in the denominator ofCX is the star,S1,n−1

with E = {(v1, vi)|i = 2, . . . , n}, for X equal to D, C or B. The center of the star,v1, is,
moreover, one node that determinesC∗

X in these cases.
Calculability of the denominator in Eqs. (1) and (2) is a necessary condition not only for

normalizing centrality-measures to point-centrality and graph-centralization but for mean-
ingful interpretation. This should be kept in mind when the above described concept is
applied to arbitrary centrality measures. We will come back to this subject later.

To avoid misunderstandings we call our concept that is developed in the next section
“node-centrality”, to distinguish from the above derived “point-centrality”.

3. Node-centrality

The question “what centrality is” seems to be difficult to answer in general, so we have
to rely on intuition.

“A person located in the center of a star is universally assumed to be structurally more
central than any other person in any other position in any other network of similar size.”
(Freeman (1979), p. 218)

We agree with Freeman when he states further that“this intuition seems to be natural
enough”. We call the node that represents the above described position in a graph thecenter
of the starand while most researchers approach centrality in terms of the “properties” of
this node, i.e. maximal degree, minimal distance and maximal betweenness, we use this
intuition as defining condition.

Definition 1. Let G = (V , E) be an undirected and connected graph with|V | = n. Let nc
be a function which assigns a real value to every node ofG. nc(vi) is called anode-centrality
of nodevi if

(I) nc(vi) ∈ [0, 1] for every vi ∈ V, and
(II ) nc(vi) = 1 if and only if G = S1,n−1 and i = 1.

Nonnegative values and a range from 0 to 1 seems to be a pure technical condition but, as
we have seen before, it is helpful for interpretation. The significance of a value depends on
minimal and maximal attainable values. Note that if they are known for some functionnc,
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condition (I) can be satisfied simply by an affine transformation ofnc. Moreover, condition
(I) corresponds exactly to point-centrality.

Condition (II) is the formal description of Freemans intuitive statement.3 The center of
a star should reach the maximal value, that is 1, and no other node should reach this value.
The latter constitutes the difference to point-centrality.

We now compare our notion of “node-centrality” to the centrality concepts introduced in
Section 2. Note first that degree- or distance-based centrality-measures do not differentiate
between the center of the star and, for example, nodes in the complete graphKn. Thus,

Result 1. Degree-centralityC′
D(vi) and closeness-centralityC′

C(vi) are not node-
centralities.

In contrast, betweenness-centrality fulfills the second condition (Freeman, 1977), and
thus,

Result 2. Betweenness-centralityC′
B(vi) is a node-centrality.

Another measure of centrality that is often used for the analysis of interlocking direc-
torates (see, e.g. Bonacich (1972a,b) and Mizruchi and Bunting (1981)) is eigenvector-
centrality (called “rank prestige” by Wasserman and Faust (1997)). In the next section we
first recall the definition and then develop conditions which assure that this centrality-measure
is a node-centrality.

4. Eigenvector-centrality

Based on the idea that an actor is more central if it is in relation with actors that are
themselves central, we can argue that the centrality of some node does not only depend on
thenumberof its adjacent nodes, but also on their value of centrality. For example, Bonacich
(1972b) defines the centralityc(vi) of a nodevi as positive multiple of the sum of adjacent
centralities, i.e.

λc(vi) =
n∑

j=1

aij c(vj ) ∀i.

In matrix notation withc = (c(v1), . . . , c(vn)) this yields

Ac = λc. (3)

This type of equation is well known and solved by the eigenvalues and eigenvectors ofA.
From the set of different eigenvectors only one seems to be an appropriate solution that can

serve as a centrality measure (see, e.g. Bonacich (1972b)). AsA is the adjacency-matrix of an
undirected (connected) graph,A is nonnegative and due to the theorem of Perron–Frobenius,
e.g. Cvetkovíc et al. (1995), there exists an eigenvector of the maximal eigenvalue with only
nonnegative (positive) entries.

3 Note, that “node-centrality” combines this intuitive approach with the formal approach of a “point-centrality”.
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We call a nonnegative eigenvectorc ≥ 0 of the maximal eigenvalueprincipal eigenvector
and an entryc(vi) eigenvector-centralityof nodevi .

Note that the principal eigenvector, and thus also a single entry, is not uniquely deter-
mined. Every multiple of the principal eigenvector satisfies Eq. (3), i.e. forc ≥ 0, principal
eigenvector ofA, αc with α > 0 is a principal eigenvector ofA, too. These vectors can be
transformed into each other by multiplication, but nevertheless they differ in interpretation
and properties. To show this we pose some simple questions: Which is the maximal value a
single entry inc can reach? Which nodevi in which graphG ∈ Gn does the maximal entry
correspond to?

The common concept for vector-normalization is that of ap-norm:

||y||p :=
{

(|y1|p + |y2|p + · · · + |yn|p)1/p, 1 ≤ p < ∞
maxi=1,... ,n|yi |, p = ∞

for anyy = (y1, . . . , yn).
Maximal entries in the principal eigenvector of graphs in dependence ofp are investigated

in Papendieck and Recht (2000). We refer to them for the proof of the statements below.
In the following sections we examine the effect that different normalization have on the

interpretation of eigenvector-centrality.

4.1. Maximum norm

To normalizec with respect to the maximum normp = ∞, we divide every entryc(vi)

by the maximal entryc(v∗) := maxj c(vj ) occurring in the centrality-vectorc

cm(vi) := c(vi)

c(v∗)
.

In Bolland (1988, p. 236)cm is calledcontinuous flow.
Properties ofcm:

• cm(vi) ∈ [0, 1] for all i.
• Obviously, maxicm(vi) = 1 for every graph.
Using continuous flow as a measure of centrality, the maximal value that can be reached is
1 and it is reached by some node in any graph, i.e. in an arbitrary social network of arbitrary
size there is always an actor with maximal central position. Thus,cm(vi) gives rather a
kind of “relative centrality” within the graph than an absolute value with respect to what is
possible. To decide which actor in which of some different networks is “more central” is
not possible using continuous flow.

This does not correspond to node-centrality where the maximum has to be reached only
by the center of a star. Using continuous flow as a point-centrality one should be aware of
this property while comparing nodes from different graphs, except regarding their relative
centrality in the graph.

Moreover, defining a graph-centralization index based on continuous flow is problematic.
As stated before, calculability of the denominator in Eq. (2) in Section 2, i.e. maximal
difference in point-centrality forG ∈ Gn, is a necessary condition. However, in contrast
to the assertion in Bolland (1988, p. 237), it is not true that the maximal centralization in
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Fig. 1. Example graphs.

Eq. (2) for the continuous flow occurs in a star. That is the maximal value in the denominator
is not

max
G∈Gn

(
n∑

i=1

(cm(v∗) − cm(vi)

)
= n − √

n − 1 − 1.

As can be seen from the following counterexample there exist graphs reaching higher
graph-centralization than the star if continuous flow is used as point-centrality.

Counterexample 2. Consider the graphs depicted in Fig. 1. For both graphs,S1,n−1 andG̃,
eigenvector-centrality is given in terms of the principal eigenvalue and the maximal entry
c(v1) andc̃(v1), respectively. For the starS1,n−1 we have

c =
(

c(v1),
c(v1)

λ
, . . . ,

c(v1)

λ

)
with λ = √

n − 1

and forG̃

c̃ =
(

c̃(v1),
µc̃(v1)

µ2 − 1
,
c̃(v1)

µ
, . . . ,

c̃(v1)

µ
,

c̃(v1)

µ2 − 1

)

with principal eigenvalue

µ =

√√√√n − 1

2
+
√(

n − 1

2

)2

− (n − 3).

After normalizationcm(v1) = c̃m(v1) = 1 and forn = 11 one easily calculates∑
(cm(v∗) − cm(vi)) = n − (n − 1)0.5 − 1 = 6.83772

∑
(c̃m(v∗) − c̃m(vi)) =

(
1 − µ

µ2 − 1

)
+ 8

(
1 − 1

µ

)
+
(

1 − 1

µ2 − 1

)
= 6.85645.

For the creation of a graph-centralization it is necessary to determine the maximal value
among all graphs. For the maximum norm, or continuous flow, this maximum is not known
yet but it can be seen from the example that the maximum is not reached by the star.
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Result 3. cm can be used to range the nodes within a graph.cm is not an appropriate measure
for the comparison of nodes from different graphs or the evaluation with respect to a given
standard.cm is not a node-centrality.

4.2. Sum-norm

To normalizec with respect top = 1, every entryc(vi) has to be divided by the sum of
all values:

cs(vi) := c(vi)∑n
i=1c(vi)

.

cs(vi) gives the proportion of centrality thatvi reaches inG. Again we are interested in the
maximal value a single node can reach, and which node reaches this value. We have the
following:

Properties ofcs:

• cs(vi) ∈
[
0, 1

(2 cos(π/(n+1)))−1+1

]
for all i

• cs(vi) = 1
(2 cos(π/(n+1)))−1+1

⇔ G = K2.

Clearly, value 1 forn > 1 does not occur. But if we knew the maximal value reached for
fixedn, we could multiply the vector by the inverse.

The upper bound forcs(vi) is only reached by the nodes ofK2 (Papendieck and Recht,
2000).

For instances ofn greater than 2 neither the value maxG∈Gnmaxi=1,... ,ncs(vi) nor which
node in which graph reaches this maximal value is a priori known. That is one has to
enumerate the values for eachG and eachn. It is known, however, that the center of the
star does not always attain the maximal value as can be seen from Fig. 1, where node 1 in
G̃ reaches an entry greater than that of the center of the star.

What does that mean? By definition the interpretation of a node-centrality is based on the
relation to the center of the star. Now, there is no such “general structure” as the star that
determines the maximal value ofcs. Even worse, evaluation of some instances ofnshows that
the structure determining the maximal value changes withn. That is forn = 4 it is the center
of the star, and forn = 11 it is definitely not the star, as calculation forG̃ in Fig. 1 shows.

Result 4. cs can be used to range nodes according to their proportion of the centrality
within a graph. Since the maximal value maxG∈Gnmaxics(vi) is in general not reached by
the center of the star,cs is not a node-centrality.

4.3. Euclidean-norm

Another often used normalization is the Euclidean norm, i.e.p = 2, that leads to

ce(vi) := c(vi)

(
∑n

i=1c(vi)2)0.5
.

Here the Euclidean length of the vectorce is 1. This does not lead to an interpretation as
easy and natural as forp = 1, but we have the following.
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Properties ofce:
• ce(vi) ∈ [0,

√
1/2] for all i

• ce(vi) = √
1/2 ⇔ G = S1,n−1 andi = 1 for all n.

These properties were already mentioned in Borgatti and Everett (1997). A proof can be
found in Papendieck and Recht (2000).

The maximal value ofce(vi) is known and uniquely determined, it is
√

(1/2) regardless
of n. This maximum is reached only by the center of a star; in contrast tocm, where the
maximum is reached by some node in every graph, andcs, where varying graphs determine
the maximum.

Again, the value 1 cannot be reached forn ≥ 2, but multiplying by the inverse of the
maximal value

√
(1/2), that is fix for alln, we reach

Result 5. For eigenvector-centralityce based on Euclidean normalization, the function

nce(vi) :=
√

2ce(vi)

is a node-centrality.

Now, after we have shown that only normalization based on the Euclidean norm leads to a
node-centrality, the following question remains: How is it possible, that although the dif-
ference between normalizing withp = 1 andp = 2 is only to multiply with an appropriate
factor, nodes from different graphs reach the maximal value?

The reason for this phenomenon is found in the relative values. To transformcs into ce
we use

ce(vi) = cs(vi)

||cs||2 .

Letv1 denote the center of the star andw1 the center of̃G in Fig. 1. With respect top = 1, the
center of the star reaches a value that is smaller than that of the center ofG̃, cs(v1) < c̃s(w1).
But the Euclidean length of this vectorcs = (cs(v1), . . . , cs(vn)) is smaller than that of
c̃s = (c̃s(w1), . . . , c̃s(wn)), too, i.e.||cs||2 < ||c̃s||2 and this difference compensates the
differencecs(v1) < c̃s(w1).

For this reason it followsce(v1) > c̃e(w1), i.e. the relation between the eigenvector-
centralities changes by normalization.

5. Conclusion

The concept of centrality is widely used in Social Network Analysis and has found
different realizations regarding proper measures.

In this paper, the outstanding structural position of the center of a star was used as a
defining property for “node-centrality”: The maximal value of a centrality measure should
be reached only by the center of the star. This concept reflects Freeman’s intuitive definition
of centrality, but it differs slightly from point-centrality.

We have discussed several centrality-concepts from the perspective of node-centrality. It
turned out that betweenness-centrality is both a point- and a node-centrality, but degree and
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closeness based measures do not satisfy the properties of node-centrality. We have shown
that eigenvector-centrality under Euclidean norm can be transformed into node-centrality,
while other normalizations fail to satisfy the conditions. Moreover, they can lead to different
“rankings” of nodes with respect to centrality, as we have seen from the example in Fig. 1.

We have seen that eigenvector-centrality with maximum norm,cm, is only suitable for
comparisons within a graph. For eigenvector-centrality with sum-norm,cs, the top end of
the scale is unknown for mostn until now, thus complicating interpretation. The effect
that normalization has on results and their interpretation should be noticed in choosing and
applying eigenvector-centrality when investigating certain social networks.
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